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Abstract 
3D DNS data of decaying turbulent non-premixed flames are analyzed with respect to the mutual alignment of the 
local scalar’s gradients. The gradients of species are not aligned with one single direction, but mostly point in 
different directions, approximately scattering within a 2D space. The significance of this scatter for the REDIM 
approach is studied by employing DNS-based gradient estimates as a basis to compute REDIMs. REDIMs obtained 
with a “conventional” and with a 2D-gradient estimate are compared. The difference is insignificant, indicating that 
for the current conditions of the DNS (low turbulence with a Taylor Reynolds number Reλ ≤ 30), the multi-
directional nature of dissipative transport is not important. 

Introduction 

The1 interaction of diffusive transport processes with 
chemical reaction is an important phenomenon for 
combustion. Improved insight into the mutual coupling 
of reaction and diffusive processes is a key for better 
understanding of combustion phenomena. The term 
representing diffusive transport via dissipative fluxes in 
the detailed scalar transport equations finds its 
correspondence, in various forms, also in reduced, 
approximate models for combustion. 

Typically, in such models the same local direction 
for the transport of all scalars is assumed. This might be 
termed “one-dimensional transport” - the local 
dissipative fluxes of all scalars are aligned with one 
spatial direction. This direction is, for instance, given by 
the gradient of mixture fraction in the classical non-
premixed flamelet model [1]. Thus, most studies in this 
field predominantly base their analysis or description 
solely on the magnitude of transport processes. The key 
advantage of this simplification is that diffusive 
processes can be described by one single parameter 
[1,2]. 

However, the diffusive fluxes are vector-valued 
quantities, and their full description therefore requires 
specification of both magnitude and direction. The 
importance of the full description increases with the 
extent of “non-parallelity” of the local gradients. 

In this context, it is interesting to check the 
parallelity of the diffusive fluxes in a practical 
combustion scenario. Ideally, experiments in flames 
could be used for this. However, the analysis would 
require instantaneous, spatially resolved three-
dimensional fields of multiple scalars (ideally, of all 
species, pressure and temperature) to be measured. This 
is beyond the currently available capabilities of 
measurement equipment. 

In this work, we consider instead data samples from 
three-dimensional Direct Numerical Simulations (DNS) 
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of turbulent non-premixed flames. The mutual 
alignment of diffusion flux vectors of different variables 
is studied. To this end, a method for gradient analysis, 
including a quantification of the misalignment of local 
gradient vectors for different scalars, is introduced and 
applied to the DNS data set. The extent of the 
directional scatter of gradients (and therefore, of 
diffusive fluxes) is found to be considerable. 
Remarkably, the scatter is not fully random, but 
approximately restricted to only two spatial dimensions. 

This indicates that at least two directions would be 
needed for a full description of the local diffusive 
fluxes. Our analysis of DNS data also offers a local 
hierarchical decomposition of the directions for 
diffusive transport, based on a singular value 
decomposition (SVD) of the local gradient vectors. This 
establishes a hierarchy of the local gradients (and 
therefore also of the diffusive fluxes) into a principal 
direction and secondary directions along which 
diffusive transport proceeds. 

These observations have potential significance for 
simplified computational models, since here mostly 
only a locally one-dimensional diffusive transport is 
provided. 

In order to assess the significance of the multi-
dimensional transport for turbulent combustion regimes, 
the results of the DNS data analysis are incorporated 
into the REDIM approach [3] as DNS-based gradient 
estimates. In the REDIM method, one-, two- and three 
dimensional gradient estimates can generically be 
accounted for [3, 4]. REDIMs are then computed for 
identical boundary conditions, but with the different 
gradient estimates. Both the observed principal and 
secondary gradient components from the DNS analysis 
are used, either separately or in combination. 
Differences between the two REDIMs are discussed. 
 
Methodology 

2.1. DNS data 
DNS results were obtained by mean of the highly 
parallel, three-dimensional in-house DNS code 
“DINOSOARS”. DINOSOARS is a low Mach number 



solver using a 6th order finite difference scheme for 
spatial derivatives and a 4th order explicit Runge-Kutta 
scheme for time integration. The chemistry production 
source term is integrated by the implicit point-wise 
integrator “RADAU-5” in order to increase the 
simulation time step. The Poisson equation is solved by 
an in-house spectral parallel Poisson solver based on the 
FFTW library, compatible with homogenous and non-
homogenous boundary conditions. All kinetic and 
transport properties in DINOSOARS are handled using 
Cantera 1.8 and Eglib 3.4. More details concerning the 
employed DNS method and the governing equations are 
given in [5]. 
In the current work, the DNS considers a decaying 
turbulent non-premixed flame at atmospheric pressure, 
where diluted N2/H2 (75%/25% by mole) counter-flows 
against an air stream (79%N2, 21%O2 by mole), both at 
298 K. The detailed chemistry scheme of [6] is used 
with a simplified Le=1 assumption for molecular 
transport. This approximation was employed in this first   
analysis to avoid additional complications associated 
with effects like differential diffusion. 

The computational domain has a size of 3.4 x 10 x 
6.8 mm3, with a spatial resolution of 23, 25 and 25 
micrometer, respectively. The time step was fixed at 0.1 
µs. The DNS are initialized with species- and 
temperature profiles from a laminar one-dimensional 
flame simulation, which are then extended along the 3D 
geometry. A velocity field corresponding to artificial 
turbulence, with a Taylor Reynolds number Reλ=30, 
large eddy turn-over time τΛ=0.32 ms and fluctuation 
u’=2,1 m/s is then overlaid. The Kolmogorov length and 
time scales are fully resolved in the DNS simulation. 
The resulting turbulent flame features local extinction, 
but is globally burning in a stable manner, as indicated 
by the temporal evolution of the heat release rate. 
 

2.2. Analysis of gradients 

The DNS data set delivers spatio-temporal fields of 
(among others) the state variables temperature T and ns 
species mass fractions Yi (i = 1,…,ns), comprising a 
nψ=(ns+1)-dimensional state vector ψ=(T, Yi) at each 
spatial and temporal point. To analyze the strength and 
relative orientation of the nψ different scalars’ gradients, 
for each time step of the DNS data set, 5000 random 
points were selected from regions where the heat release 
rate was at least a specified fraction of the global 
maximum heat release. Several thresholds were used in 
different runs of the analysis, ranging from 10-6 to 10-1. 
At each one of these points, the 3D spatial gradients for 
all scalars were determined. The resulting gradients 
were arranged into a 3-by-nψ gradient array G, in which 
columns correspond to variables and rows correspond to 
spatial directions (x, y, z). Normalizing all columns of G 
to 1 then yields a normalized version Gnorm of G. We are 
interested in the mutual (mis-)alignment of the gradient 
vectors in G or Gnorm, as opposed to the “overall” 
direction of the gradients dictated by the local flame 
orientation. To determine and remove the overall trend, 
a local coordinate frame that is aligned with the 
dissipation field is constructed, and the analysis then 
focuses on the components of the gradients in this 
aligned frame.  

Several methods exist for constructing such a locally 
aligned coordinate system. For instance, the gradients of 
selected species or other state variables may be used as 
a basis for the coordinate system. The classical non-
premixed flamelet model [1] employs the gradient of the 
mixture fraction for this purpose. 

In this paper, we take a different approach, searching 
for the direction that best represents the trend of the 
different local gradient vectors. For this, the matrix 
Gnorm is decomposed according to singular value 

   
 

Fig. 1 Left: Some synthetic normalized gradient vectors (simplified example in two dimensions), and the first column u 
(principal direction) and second column v (secondary direction) of the matrix Y resulting from the hierarchical decomposition 
via SVD. Right: A three-dimensional example of actual gradients from the DNS data set. Normalized gradient vectors of 
different species and temperature (as indicated by the labels) are shown along with the three principal direction vectors u, v, w. 
The gradients are not well-aligned, but scatter approximately within a two-dimensional space. 



decomposition (SVD, [7]) into the matrix product of 
three matrices A, S and B according to:  

Gnorm = A ⋅S ⋅BT , 

where the superscript “T” denotes matrix 
transposition. The column vectors of the 3x3 matrix A 
form an orthonormal basis in geometrical space, which 
is optimally aligned with the directions of the local 
gradient vectors in Gnorm. The two-dimensional example 
in Fig. 1 (left) illustrates this, while the diagram on the 
right shows a genuine example for the vectors extracted 
from a point of the DNS. The first column (named u) of 
A is optimally aligned with the direction of the gradient 
vectors. The second column (v) in A optimally 
describes the direction of the gradient vectors after their 
u-component has been removed, while the third column 
(w) of A represents the direction that is least represented 
by the gradient vectors. The column vectors in A = (u v 
w) therefore constitute a “dissipation-aligned” 
orthogonal coordinate system, which additionally offers 
a natural hierarchy of gradient directions. 

The matrix S is a diagonal matrix with real positive 
entries σi, (called singular values) which appear sorted 
(from large to small) along the diagonal (top left to 

bottom right) of S. The i-th singular value represents the 
importance of the i-th column vector in A for the 
description of the vectors in Gnorm. Since σ1>σ2>σ3, this 
reflects the hierarchical ordering of the vectors u,v,w in 
A. Figure 2 shows, as an exemplary result from the 
DNS data analysis, the fields of temperature (center) 
and of the ratio σ2/(σ1+σ2) (right part of the image) in a 
typical turbulent flame region. Significant regions exist 
in the flame where the ratio approaches the value 0.5 
(the maximum possible value, since σ2<σ1), i.e., where 
the local gradient vectors are close to the maximally 
possible misalignment. 

For our analysis, the Matrix B is of minor interest.  

By applying the unitary transformation AT⋅Gnorm, the 
coordinates of the variables’ gradients in the standard 
(x,y,z)-coordinate frame are transformed into the 
coordinates in the dissipation-aligned (u,v,w) coordinate 
system. These (u,v,w)-based coordinates of gradients 
will be considered in the sections below. 
 

2.3. Modified REDIM method 

In order to illustrate how multi-dimensionality of the 
system gradients can be accounted for, an overview of 
the REDIM method will be shortly given in this 
subsection (see e.g. [3,4] for details). The original 
system of equations governing the reacting flow can be 
cast in vector form in coordinate free formulation as the 
following 

 
∂ψ
∂t

= F ψ( )− !vgradψ + 1
ρ
div D ψ( )gradψ( )             (1) 

This system describes the evolution of the thermo-
chemical state vector ( )nψψψ ,...,1=  in time and in 
physical space, where the jψ  represent such quantities 
as the pressure of the mixture p , the enthalpy h  and 

chemical species’ specific mole numbers 
Yi /Mi, i =1,...,ns  (mass fractions divided by molar 
masses). F  represents the chemical source term, v! is 
velocity vector, ρ  is the density and D  is the general 
diffusion matrix. A reduced model can be created by 
assuming existence of internal relations (correlations) 
between the variables of the system (1) such that the 
detailed system evolves within a low-dimensional 
surface (manifold) in the state space spanned by the jψ . 

This manifold then can be explicitly defined and 
described as 

 
( ) ( ){ } nmM m <<=== ,,...,: 1 θθθθψψ .            (2) 

  
Fig. 2: Left: Temporal development of the u-,v- and w-components of grad(T). Time steps are given in units of 0.1 
microseconds. Center: 2D-cut through the temperature field from the DNS sample, showing a turbulent flame (false color scale 
from 300 K to 1350 K). Right: the ratio σ1/(σ1+σ2) of singular values (false color scale from 0 to 0.5) from the SVD. In some 
regions within the flame, the ratio is close to the maximum possible value of 0.5, indicating extremely strong local directional 
scatter of scalar gradients. The x- and y-axes in the central and right diagram are in scales of mm.  

 



The REDIM equation can be used to find the 
manifold (surface) resulting from the invariance 
relations (see e.g. [3,4,8]), by using some initial solution 
and estimates of the detailed system’s gradients as 
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In this approach, the molecular transport term 
describing the fluxes ( )( )ψψ graddiv D  explicitly 
depends on the detailed system’s gradients calculated on 
the manifold 

 
gradψ θ( ) =ψθ θ( ) gradθ               (4) 

Hence, the information on the gradients and their 
dependence on the reduced variable θ must be specified 
before the stationary solution of Eq. (3) can be 
calculated. Note that the reduced system’s state space – 
the manifold in Eq. (2) – is defined by only two 
processes (reaction and diffusion, see e.g. [3] and Eq. 
(3)). The gradients in Eq. (4) have to be incorporated 
consistently with the problem’s boundary- and initial 
conditions. In order to illustrate how the multi-
dimensional transport can be accounted for, the 
transport term is simplified by assuming a constant 
diagonal diffusion matrix and a Cartesian coordinate 
system 

 
T ψ( ) = div D ψ( ) grad ψ( )( ),
D ψ( ) = d ⋅ I⇒ T ψ( ) = d div grad ψ( )( )

.             (5) 

Thus, the simple Laplacian diffusion term in 3D can 
be written as: 
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By using the gradient estimate as described in 

subsection 3.2 below and the definition of the Laplace 
operator, the transport term (transversal to the tangential 
space of the manifold), Eq. (5) on the manifold can be 
further simplified to: 

 
T ψ θ( )( ) = dψθθ θ( )!grad θ( )!grad θ( ) =!
d [gradx θ( )T ⋅ψθθ θ( ) ⋅gradx θ( )+!
grady θ( )T ⋅ψθθ θ( ) ⋅grady θ( )+!
gradz θ( )T ⋅ψθθ θ( ) ⋅gradz θ( )]          

(6) 

 
Hence, the gradients of the parameter on the 

manifold are only needed to employ the REDIM 
equation and integrate Eq. (3).  

These gradients can be found from the DNS data 
analysis: In the orthogonal local coordinate system (u, v, 
w), the gradients grad(u,v,w)(ψ) are estimated (see Fig. 3), 
and the information about grad(u,v,w)(θ) can be 
transferred to the local coordinates according to Eq. (4). 
E.g. for the u-direction, it reads 

 
gradu ψ( ) =ψθ gradu θ( )→
gradu θ( ) =ψθ

+ gradu ψ θ( )( )
.              (7) 

   
 

Fig. 3. DNS-based gradient estimates (u- and v-components) on the REDIM manifold as a function of (Ν2, Η2Ο). Blue – gradU N2 
and H2O, green – gradV of N2 and H2O, red – gradient estimates taken from linearly extrapolated stationary solutions of the 
detailed system for different strain rates. 



 

Results 

3.1. Gradient statistics 

The directions of gradients corresponding to 
different variables often scatter strongly (cf. Fig 1). The 
leftmost diagrams in Fig. 2 show, as a representative 
data set, the temporal development of the u-, v- and w- 
components of grad(T) in the flame, as obtained from 
the DNS data analysis described in section 2.2. The v- 
and w-components are plotted vs. the u-component. 
Each of the 9 sub-diagrams refers to one time step of the 
DNS simulation, as indicated in the labels (times are 
given in units of 0.1 microseconds). For the initial, 
laminar flame (time 0), the v- and w- components are 
zero, reflecting the fact that the gradient of temperature 
is perfectly aligned with the first principal direction (the 
u-direction). In fact, for early times, all scalars’ 
gradients are oriented in the same direction, therefore 
only the u-component is non-zero for all gradients. This 
corresponds to the case of one-dimensional dissipation, 
stemming from the one-dimensional flame-based scalar 
fields used to initialize the DNS. With increasing time, 
the v-component becomes increasingly important. After 

0.36 ms (a time slightly larger than the initial turbulent 
large eddy turnover time scale, 1.125 τΛ) , the 
magnitudes of u- and v-components become 
comparable, and two spatial directions now essentially 
dominate the diffusive transport. Note that the v-
component can show the same magnitude as the u-
component also for large values of the gradients; the 
directional scatter is therefore by no means only a 
spurious phenomenon that occurs only at small, 
insignificant gradients.  

The third (w-) component of the gradient, however, 
remains small at all timesteps. Although the third 
dimension (pointing in w-direction) is available in 
principle, it is practically not represented in the data. 
Therefore, dissipation here is an essentially two-
dimensional phenomenon. 

 
3.2. 1D and 2D gradient estimates 

As a result of the SVD-analysis, u, v and w 
components of gradients are available for 5000 DNS 
data points, along with the mass fractions of N2 and H2O 
and the corresponding values (θ1, θ2). The data points 
(gradqψk, q1, q2) (q=u, v, k=N2, H2O) approximately 
describe two-dimensional surfaces; numerical 

   

   
 

Fig. 4. REDIMs in projection to some species mole numbers. The red mesh shows the REDIM where the transport in both 
directions u and v was accounted for, blue mesh – only u, green mesh – only v. The black curves are stationary solutions for 
different scalar dissipation rates. 



representations of these surfaces were computed on a 
rectangular grid in the REDIM coordinates (θ1, θ2) by 
taking a distance-weighted average of gradqψk at each 
grid point. Figure 3 shows the resulting surfaces for the 
u- and v-components of grad N2 and grad H2O. 

In this way the function of the detailed system 
solution gradients are estimated and can be incorporated 
in Eq. (7) e.g. for the first (u-) component: 

( ) ( )
( ) ( ) ( )θθψθ

θψ

θ u

u

f

f
+=

→=

u

u

grad

grad .   (8) 

These estimates can then be used in the integration 
of the REDIM equation. 

 
3.3. REDIM with 1D and 2D transport 

The DNS data analysis provides gradient estimates 
(see Fig. 3) characterizing the dissipative processes in 
the considered example as essentially two-dimensional 
(in the sense of section 3.1). Therefore, the third term in 
Eq. (6) is negligible, while the second term does have 
some noticeable contribution (see Fig. 3, compare green 
and blue meshes). Figure 4 shows the resulting REDIMs 
for three different cases, together with some stationary 
detailed solutions of counterflowing flames with 
different strain rates. For the blue mesh, only 1D 
dissipation (using gradu) is accounted for; the green 
mesh is also for 1D dissipation, but with only gradv 
considered in Eq. (7). The red mesh shows the manifold 
when both gradu and gradv are considered in the REDIM 
evolution equation, Eq. (3). Significant differences are 
apparent when only the second direction is accounted 
for (even for main radicals like O or H2O2, the 
maximum concentration is slightly overestimated by the 
green mesh, see Fig. 4), while the differences between 
blue and red are moderate. At the same time, Fig. 4 (on 
the right) shows that the chemical source terms 
evaluated on the REDIM match much better for both the 
minor as well as for major species. It additionally gives 
credits to the 1D model in the example considered here. 
Namely, it can satisfactorily be described using only 
one-dimensional dissipation, along the first (u-) 
direction. 
 

Conclusions 

The mutual alignment of the local diffusion fluxes of 
different state variables (temperature and species) in a 
non-premixed turbulent combustion scenario has been 
studied using 3D DNS data. In the considered flame 
configuration, the local diffusion fluxes of different 
species display considerable directional scatter, while 
residing approximately within a two-dimensional 
subspace of the three-dimensional geometrical space. 
Such a two-dimensional nature of diffusion fluxes is not 
accounted for in most simplified combustion models. 
The significance of the multi-dimensional transport for 
model reduction was then studied using a REDIM-
approach, which naturally allows incorporating these 
effects. Different REDIMs for identical boundary 

conditions, but with different dimensionality of the 
DNS-based gradient estimate were computed and 
compared. The differences, while noticeable, are quite 
small. 

We conclude that, for the conditions of the DNS 
considered here (low turbulence level), the two-
dimensional dissipative transport is of negligible 
influence concerning the overall behavior of the 
reaction-diffusion system. However, for stronger 
turbulence (Reλ≥60, leading to high mixing and 
dissipation rate) or when more detailed models for 
molecular transport are used, the multi-dimensional 
transport might rapidly gain importance as an 
influencing factor. The methodology developed in this 
work will be applied to corresponding data with higher 
turbulence and with more complex diffusion models in 
the near future. 
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