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Abstract
Turbulent premixed opposed jet flames typically feature large density variations coupled with an imposed pressure gradient, both
affect turbulence and scalar statistics significantly. The present work explores the modelling of such flames at the full second
moment level for both velocity and scalar transport and includes extended variable density forms for redistribution/scrambling,
dilatation and dissipation. The full closure includes preferential acceleration and dilatation models and is applied to the simulation
of lean methane–air flames with the thermochemistry derived for the laminar flamelet regime. The encouraging agreement with
experimental data for both turbulence and scalar quantities illustrates the importance of dilatation effects with the extended closure
providing significantly improved agreement. However, it is also noted that the treatment of redistribution appears inaccurate near
the stagnation plane. Furthermore, an analysis of the modelled scalar flux equation reveals that the treatment of “dilatation” and the
mean scalar gradient has a significant impact and that the modelling of scalar dissipation requires further attention. Comparisons
for a flame close to the flammability limit suggests that the current flamelet assumption is insufficient to capture the extinction.

1. Introduction

Second moment closure methods [1, 2] provide higher ac-
curacy for turbulence and scalar statistics compared to the eddy
viscosity formalism (e.g. the k-ε model [3]), which, for exam-
ple, fails to predict non–gradient transport [4]. Experiments on
opposed jet flows [5, 6] provide canonical test cases for the as-
sessment of closure approximations and recent studies [6] of
lean premixed flames feature fractal–grids to generate turbu-
lence at comparatively high Reynolds numbers in order to re-
duce the relative effect of bulk strain. In addition to the mean
and turbulence quantities, turbulent scalar fluxes are now also
available for comparisons with computational studies.

The modelling of pressure–related terms is a key issue for
the closures of second moment methods. Such terms also tend
to act across scales and an understanding of their importance is
of relevance also to Large Eddy Simulation (LES) based simu-
lations [7]. The large density variations in opposed jet flames
bring further difficulties as variable density effects should be
considered. This inherent characteristic makes the prevalent
density weighed form [1] of redistribution/scrambling models
insufficient [2]. The variable density effects mainly function in
two ways and are included in the mean pressure gradient terms
and pressure-strain terms, respectively. The former relates to
the preferential acceleration effects driven by the mean pressure
gradient. The corresponding acceleration extensions [2] are in-
dependent of the combustion regime and have been successfully
added to extend isothermal redistribution/scrambling models.
The other variable density effect is associated with the fluctu-
ating pressure, which requires additional models for scrambling
in the scalar flux transport and for dilatation in the transport of
Reynolds stresses. Dilatation models (e.g. [8, 9]) have seldom
been used in the context of second moment closures due to for-
mulation and implementation difficulties.

The objective of the present study is to test a complete clo-
sure for the pressure correlation terms for premixed turbulent
flames and explore the possible need for further developments
for turbulence and chemistry closures. A class of model exten-
sions associated with preferential acceleration effects as well as
“dilatation” effects have been added to the isothermal counter-
parts in Reynolds stress, scalar flux and turbulent kinetic energy
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dissipation equations, respectively. The chosen dilatation model
is consistent of the reaction–related closure implied by the BML
formalism [10]. The extended complete closure is applied to the
simulation of lean premixed turbulent methane–air opposed jet
flames. Comparison with both mean and fluctuating quantities
are made, including the turbulent scalar flux.

2. Closure Approximations

The starting point of the current study is a full second mo-
ment closure for both velocity and scalar fields [2]. The for-
mulation includes extended forms for redistribution and scram-
bling terms. However, the “dilatation” effects, induced by the
fluctuating pressure, were not added, but have been included
here. Such terms can be significant for combusting flow with
large density variations and the dilatation model is using a for-
malism [9] that is consistent with a reaction rate closure for
the laminar flamelet regime of combustion. The correspond-
ing term associated with the divergence of the fluctuating scalar
shares a similar form,
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represents the conventional average form with τ , uL
and Sc represent the expansion ratio, laminar burning velocity
and mean reaction rate, respectively.

The dilatation/extended scrambling terms induced by the
fluctuating pressure are exact in both transport equations of
Reynolds stress and scalar flux. However, a modelled term is
added into the ε̃ equation with a coefficient Cε4 . The constant
should be of order unity and the impact on the modelling of the
current flames is discussed below.

The common absence of scaling effects based on the mean
scalar gradient is another issue. Thus in addition to the prefer-
ential acceleration φAic and dilatation/extended scrambling φSe

ic

terms, the present study analyses the effects of an additional
scrambling term to balance the production of scalar flux [12].
Accordingly, the scrambling term φSs

ic replaces the isothermal
counterpart in Table 1 and takes the following form:
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Figure 1: Predicted and measured mean reaction progress vari-
able (c̃) along the centreline. Symbols: (◦) experimental data
(φ = 0.90) by Goh et al. [6]. Lines: (—) SMC with dilatation
model and standard dissipation equation; (-·-) SMC with dilata-
tion model and the modified dissipation equation [14]; (- - -)
SMC without dilatation model [2]; (· · ·) k-ε model.

φSs
ic = −C1cRτ

ε̃

k̃
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The model constants are Rτ = 0.8, C1c = 3.0, C2c = 0.5 and
C3c = 0.25 [12].

The diffusion terms, such as the triple moments, which have
a minor impact, are modelled using the generalised gradient dif-
fusion model of Daly and Harlow [13]. The turbulent kinetic
energy dissipation is normally based on the ”standard” dissipa-
tion equation [11]. However, the renormalization group form
developed by Yakhot and Orszag [14] has also been examined.
The chemical reaction rate closure follows the two–scale for-
mulation by Lindstedt and Váos [2]:

Sc = CRρu
uL
vK

ε̃

k̃
c̃
(
1− c̃

)
(4)

where the reaction rate constant CR = 2.6. The complete clo-
sure is listed in Table 1.

3. Application of the Model

The full closure was applied to the simulation of the lean
φ = 0.80 and 0.90 turbulent premixed methane–air opposed
jet flames investigated experimentally by Goh et al. [6]. For
the richer flame, the laminar burning velocity (uL) and the
heat release parameter (τ ) were obtained as 0.325 ms−1and
5.720 [15] and for the leaner case the corresponding values
were 0.262 ms−1 and 5.407. Simulations were performed us-
ing a two-dimensional axi–symmetric approximation and were
fully transient with the governing equations integrated in a con-
servation form. The computational domain was discretised us-
ing a uniform orthogonal 190×39 cells (radial×axial). Grid-
independence was verified with the same aspect ratio, but with
60 grids applied in the burner axial direction. The grid spac-
ing was set to be similar to the experimentally estimated Kol-
mogorov scale [16] in the cold flow. A variable predictor–
corrector variant (with splitting error control) of the PISO [17]
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Figure 2: Predicted and measured mean velocity (Ũ ) along the
centreline. Symbols and lines as in Fig. 1.
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Figure 3: Predicted and measured turbulent kinetic energy (k̃)
along the centreline. Symbols: (◦) experimental data (φ =
0.90) by Goh et al. [6]. Lines: (—) SMC with dilatation model
and standard dissipation equation; (-·-) SMC with dilatation
model and the modified dissipation equation [14]; (- - -) SMC
without dilatation model [2].
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Figure 4: Predicted and measured axial Reynolds stress (ũ′′u′′)
along the centreline. Symbols and lines as Fig. 3.
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Figure 5: Predicted and measured radical Reynolds stress
(ṽ′′v′′) along the centreline. Symbols and lines as Fig. 3.
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Figure 6: Predicted and measured scalar variance (c̃′′2) along
the centreline. Symbols and lines as Fig. 3.

algorithm was applied for the velocity-pressure coupling. A
TVD scheme [18] was used to reduce numerical diffusion [2].

3.1 Closures

For comparison, the results obtained with the k-ε model are
presented along with the full second moment closures proposed
by Lindstedt and Váos [2] and, finally, with the current “dilata-
tion models”. To be consistent with the simulation results, the
experimental data has been converted into Favre averaging form
according to the BML theory [10].

Predicted and measured mean reaction progress variable
and velocity along the centreline are shown in Figs. 1 and 2
for the case with φ = 0.90. Inspection of Fig. 1 reveals that full
second moment closures capture the position of flame front and
the thickness of flame brush reasonably accurately, while the k-
εmodel cannot. As shown in Fig. 2, excellent agreement for the
mean velocity is obtained along the centreline for the full sec-
ond moment closures. The addition of the “dilatation” model
provides slightly better agreement. The modified dissipation
equation [14] has a comparatively minor impact on mean quan-
tities and slightly increases the mean reaction progress variable.

3.2 Effects of Dilatation

The effects of “dilatation” model have been further ex-
amined for both turbulence and scalar quantities as shown in
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Figure 7: Predicted and measured scalar flux (ũ′′c′′) along the
centreline. Symbols and lines as Fig. 3.
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Figure 8: Source terms of predicted scalar flux (ũ′′c′′) in the
scalar field. Symbols and Lines: (-+-) Term I; (-◦-) Term II; (-
∗-) Term III; (-•-) Term IV; (-�-) Term V; (-♦-) Term VI; (-?-)
Term VII.
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Figure 9: Predicted and measured mean velocity (Ũ ) along the
centreline. Symbols: (◦) experimental data (φ = 0.8) by Goh
et al. [6]. Lines: (—) full second moment closures with dilata-
tion model, CR = 2.6; (-·-) full second moment closures with
dilatation model, CR = 2.2.
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Figure 10: Predicted and measured turbulent kinetic energy (k̃)
along the centreline. Symbols and lines as Fig. 9.

Figs. 3 - 7. Predicted k̃ along the centreline obtained by full
second moment closures with the “dilatation” model provides
much better agreement with experiments. Comparing with the
closures without dilatation effects, the extended closures with
‘dilatation” model substantially increase the turbulent kinetic
energy. The normal Reynolds stresses ũ′′u′′ and ṽ′′v′′ are
shown in Figs. 4 and 5. Inspection shows that the predictions
agree well with the experiment near the flame front, but that
redistribution of k̃ is inadequate near the stagnation plane.

A further evaluation of the predictions of scalar statistics
is shown in Fig. 6, which shows the scalar variance c̃′′2 along
the centreline. The extended scrambling model (correspond-
ing to the dilatation model) has a minor impact and both cases
show good agreement with experimental data. The scalar flux
ũ′′c′′ is of great significance in terms of flame dynamics and
non–gradient transport of ũ′′c′′ can arise when the heat release
reaches a sufficiently high value. In the current geometry, the
imposed pressure gradient is causing further complications. Ex-
perimental data [6] for ũ′′c′′ is now available and enables an as-
sessment of the scalar flux closure. As shown in Fig. 7, the full
second moment closures with reaction–related extended scram-
bling model (corresponding to the “dilatation” model in ũ′′i u

′′
j )

improves the prediction of the scalar flux. However, it is also
apparent that further improvements are required in order to cap-
ture experimentally observed transition from gradient to non–
gradient transport. The dilatation/extended scrambling models
added in ũ′′i u

′′
j and ũ′′i c′′ equations, have a comparatively large

impact on turbulence quantities and the turbulent scalar flux.

3.3 Sensitivity Analysis on ũ′′c′′

Each source term of ũ′′c′′ has been computed and analysed.
Consistent with Table 1, source terms are denoted as Terms I to
VII as shown in Fig. 8. It can been observed that the extended
scrambling term (Term VII, corresponding to the dilatation term
in ũ′′i u

′′
j equation) and the mean scalar gradient term (Term II)

have a significantly higher impact as compared to other terms
and an additional scrambling term could be required to balance
the anisotropy caused by the mean scalar gradient.

As described earlier, “dilatation” and the corresponding
scrambling terms in ũ′′i u

′′
j and ũ′′i c′′ equations are exact. The

dilatation term in the ε̃ equation, however, has a modelled co-
efficient Cε4 . A sensitivity analysis on Cε4 was made and re-
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Figure 11: Predicted and measured axial Reynolds stress
(ũ′′u′′) along the centreline. Symbols and lines as Fig. 9.
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Figure 12: Predicted and measured radical Reynolds stress
(ṽ′′v′′) along the centreline. Symbols and lines as Fig. 9.
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Figure 13: Predicted and measured mean reaction progress vari-
able (c̃) along the centreline. Symbols and lines as Fig. 9.
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Figure 14: Predicted and measured scalar variance (c̃′′2) along
the centreline. Symbols and lines as Fig. 9.

veals that Cε4 has a significant impact on ũ′′c′′, especially near
the stagnation plane. A lower value of Cε4 leads to a lower
ε̃ and seems to achieve better agreement for the approach to
the counter-gradient. However, the shape of ũ′′c′′ distribu-
tion along the scalar field remains problematic. The reason
can arguably be related to the time scale adopted. The cur-
rent simulation takes the tensor Gij directly from the isother-
mal scrambling model with the assumption that the scalar time
scale ε̃c/c̃′′2 equals to the turbulence time scale ε̃/k̃. The results
suggest that a lower and variable scalar time scale distribution
might be expected. As Fig. 6 indicates a relatively accurate pre-
diction of c̃′′2, a more sophisticated closure for the scalar dissi-
pation rate ε̃c may provide a fruitful direction.

As the mean scalar gradient (Term II) predicts significant
anisotropy (Fig. 8), the current closure was extended by adopt-
ing an additional anisotropic scrambling term induced by the
mean scalar gradient as written in Eq. 3. For all computed cases,
the extended scrambling/dilatation models have been consid-
ered in both closures for the Reynolds stresses and scalar fluxes
and the cofficient Cε4 in turbulent kinetic energy dissipation
equation is taken as 1.0. For the cases using Eq. 3, the coef-
ficient C3c varies from 0.25 to 0.80. Closures with the mean
scalar gradient induced scrambling term decrease the absolute
value of ũ′′c′′. Thus, an additional term corresponding to the
mean scalar gradient should be examined more thoroughly and
considered in the closure for the scrambling term.

3.4 Effects of Chemical Reaction

The chemical reaction rate closure based on the laminar
flamelet assumption is comparatively simple and the accuracy
can be expected to be reduced by local extinction effects near
the flammability limits. Accordingly, methane–air flames with
an equivalence ratio of 0.80 was also studied. The standard dis-
sipation equation with preferential acceleration and dilatation
additions were used as the impact of the renormlization theory
based modification to the dissipation rate equation [14] has a
comparatively modest impact in the current flames.

Predicted and measured results are shown in Figs. 9 - 15.
The chemical reaction rate coefficient CR was chosen as the
standard value (2.6) and also reduced to 2.2. It is evident that
the chemical reaction rate has a significant impact as shown in
Figs. 13 - 15. The case withCR = 2.6 can no longer predict the
mean reaction progress variable and the position of the flame
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Figure 15: Predicted and measured scalar flux (ũ′′c′′) along the
centreline. Symbols and lines as Fig. 9.

front as accurately as for the richer case. Better agreement is
achieved using the lower value, suggesting that local extinction
effects need to be taken into account.

4. Conclusion

The present study is based on a comprehensive second mo-
ment closure for premixed turbulent flames with variable den-
sity effects. The closures for the pressure correlation terms have
been modelled thoroughly. In addition to the preferential accel-
eration terms associated with the mean pressure gradient, the
dilatation and extended scrambling terms induced by the fluc-
tuating pressure have also been considered. The choice of the
latter is consistent with the chemical reaction closure implied
by BML formalism. The complete closures have been applied
to the simulation of turbulent opposed premixed methane–air
flames. Encouraging agreements with experimental data sug-
gest that the dilatation model has a significant impact. However,
the modelling of k̃ redistribution appears to need further con-
sideration due to the inaccurate prediction of ũ′′u′′ and ṽ′′v′′

near the stagnation plane. With regard to the scalar statistics,
the full second moment closure predicts the scalar variance c̃′′2

accurately and using an extended scrambling term (Term VII)
provides a slightly better prediction on the ũ′′c′′. Further anal-
ysis of the ũ′′c′′ transport equation suggests that a transport of
the scalar dissipation rate ε̃c should be considered along with a
scaling on the mean scalar gradient in the scrambling term.

Results also suggest that inclusion of local extinction effects
becomes necessary near the flammability limits.
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Table 1: Table of modeled governing equations
(the tensor Gij and symbols are consistent with [2])

∂ρ̄

∂t
+
∂ρ̄ũl
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∂ũ′′i u
′′
j

∂xl

]
+ Pij + Φij + φDij + φCDij + φAij − ρ̄εij

Pij = −ρ̄

[
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Cε1 = 1.44, Cε2 = 1.92, Cε3 = 1.20, CSe
= 0.18,

Cε4 = 1.00
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