
Investigation of the Effect of Correlated Uncertain Rate Parameters  

on a Model of Hydrogen Combustion Using a Generalized HDMR method 

É. Valkó1,2, A.S. Tomlin3, T. Varga1,2, T. Turányi∗, 1 
1 Institute of Chemistry, Eötvös University (ELTE), Budapest, Hungary 

2 MTA-ELTE Research Group on Complex Chemical Systems, Budapest, Hungary 
3 School of Chemical and Process Engineering, University of Leeds, Leeds, UK 

Abstract  
The High Dimensional Model Representation (HDMR) method has been applied in several previous studies to 
obtain global sensitivity indices of uncorrelated model parameters in combustion systems. The method is based on a 
decomposition of the model output in terms of a hierarchy of cooperative effects among the model inputs, which is 
unique when the input parameters are independent. However, many combustion systems  will contain correlated 
input parameters. The development of a generalized HDMR method is therefore presented here, which uses the 
Rosenblatt transformation on a correlated model parameter sample to obtain a sample of independent parameters. 
The generalized HDMR method is used for the determination of sensitivity indices of a hydrogen combustion model 
with 33 correlated input parameters for a given set of experimental conditions. The effect of the correlation of rate 
parameters on the calculated sensitivity indices of ignition delay times is investigated. 
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Introduction 
Combustion models usually have many parameters 

and the quantification of each of these parameters will 
involve a level of uncertainty. Uncertainty analysis is 
widely used in combustion chemistry [1, 2] to 
investigate the uncertainty of simulation results 
knowing the uncertainty of model parameters. A critical 
step in determining such model output uncertainty is the 
determination of the extent of the uncertainty of its 
input parameters. One possibility for the assessment of 
input uncertainties is the investigation of the parameters 
one-by-one separately via tracing the source of the value 
of the parameter. Usually each parameter used in the 
model is based on one or several measurements. A 
measurement that aims at the determination of a kinetic 
or thermodynamic parameter is called a direct one. The 
evaluation of the systematic and statistical errors of 
these direct measurements allows an estimation of the 
uncertainty of each parameter. In most uncertainty 
analysis studies carried out so far in combustion 
chemistry (see e.g. [3-8]), the parameters were 
considered to be uncorrelated, since no information was 
available on their joint distributions. 

Indirect measurements can be interpreted only by 
multi-parameter models. In combustion, such indirect 
measurements include for example the determination of 
laminar flame velocities or ignition delay times. 
Systematic optimization of reaction mechanisms (see 
e.g. [9-12]) means that the highly sensitive model 
parameters are fitted to indirect experimental data. 
Sheen and Wang calculated the covariance matrix of the 
fitted parameters [13, 14], which carries information on 
the joint uncertainty of the parameters. The rate 
parameters that Sheen and Wang optimized were 
Arrhenius A parameters and 3rd body collision 
efficiency factors. Turányi et al. [15-18] extended the 
methodology of mechanism optimization to the 
determination of all Arrhenius parameters A, n, E of the 

important reaction steps together with the fitting of the 
important 3rd body collision efficiency factors. Turányi 
et al. also calculated the covariance matrix of all 
determined parameters. It follows therefore that the joint 
distributions of groups of model input parameters are 
likely to become more widely available as optimization 
methodologies are applied to more and more systems. 
Uncertainty and sensitivity analysis techniques therefore 
need to reflect such developments where correlations 
between parameters are known.  

 
HDMR Global Uncertainty Analysis 

The aim of sensitivity analysis is to assess how the 
values of the model parameters influence the modelling 
results. Local sensitivity analysis [19] is regularly used 
in combustion modelling practice. The drawback of 
local methods is that they provide information on the 
importance of a parameter when all parameters of the 
model take their nominal value, and therefore cannot 
easily capture any nonlinear effects. Using another 
approach, called global sensitivity analysis, all 
parameters of the model may take any value within their 
joint domain of uncertainty and the importance of 
parameters is investigated within this domain. Global 
sensitivity analysis involves global uncertainty analysis 
of the model parameters, since the uncertainty domain 
of the parameters has to be defined. A wide range of 
global uncertainty analysis methods have been 
elaborated [2], which differ in computational 
requirements and the information provided.  

The High Dimensional Model Representation 
(HDMR) method [20-23] has several advantageous 
features and therefore is summarized below. The 
HDMR method has several possible variants and the 
description below concentrates on the random sampling 
method (RS-HDMR). 

First we denote the parameters of a model by 
),,( 21 nxxx K=x  and the simulation result )(xf  (f: R

n 



2 
 

→ R). The result of the model can be expressed as a 
hierarchical expansion of the parameters: 
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where constant f0 represents the mean value across the 
input sample, RRxf ii →:)( is the contribution of the i-

th input parameter xi to )(xf ; RRxxf jiji →2:),(  is 

the cooperative contribution of the i-th and j-th inputs 
parameters to )(xf , etc. The zeroth-order, first-order, 

second-order, etc. component functions are denoted by 
f0, fi, fij etc, respectively. If the expansion is truncated 
after the third-order component function, the following 
approximation for the output function is obtained: 
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If parameters x1, x2, …, xn are independent, then the 

component functions can be determined uniquely and 
optimally [24]. This means that the component 
functions can be expressed using an orthogonal 
polynomial basis: 
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where Oi and Oij denote the order and 
iji βα , denote the 

coefficients of basis functions iϕ  and jϕ . These 

coefficients are determined by fitting the RS-HDMR 
function to a sample of runs from the full model. It is 
important to notice that the determination of the 
orthogonal basis functions depends on the distribution 
of the input parameters. If optimal basis functions are 
chosen and the optimal coefficients are calculated (e.g. 
using a least-squares method), then the sensitivity 
indices can be determined as detailed below. 

Let V denote the total variance of f(x), 
iV  the partial 

variance of )(xf  due to 
ix alone and 

ijV the partial 

variance of )(xf  due to the interactions between 
ix  

and 
jx , etc. We can define the first- and second-order 

sensitivity indices as Si = Vi/V = ))(())|)((( xfVxxfEV i
 

and Sij = Vij/V = ))(()),|)((( xfVxxxfEV ji , 

respectively. If an accurate fit is obtained such that Eq. 
(3) provides a good representation of the expansion in 

Eq. (1), then the sum of these indices should be close to 
1. 

The total order effect for parameter xi can be 
interpreted in the following way:  
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The total sensitivity index total

iS measures the 

contribution of 
ix  to the output variance, including all 

variances caused by its interactions of any order, with 
any other input parameters. Note that whilst the sum of 
all indices, from an accurate RS-HDMR fit should not 

be greater than 1, perhaps paradoxically ∑
i

total

iS can be 

higher than 1. For example, sensitivity index 12S  is 

added twice to the sum, since it is counted within the 
calculation of both total

S1 and total
S2 . 

If the input parameters are independent, we can 
determine the optimal orthogonal polynomial expansion 
of the component functions. Using Eq. (1), the partial 
variances can be calculated and the sensitivity indices of 
the given parameters can be determined: 
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This methodology is not applicable when the 

parameters are dependent, because in this case the 
polynomial expansion of the component functions is not 
unique, and coefficients 

iα  and 
ijβ cannot be used to 

calculate sensitivity indices [24]. 
Li and Rabitz have discussed [24] the application of 

the HDMR method for the analysis of models with 
dependent parameters. However, their method is 
computationally demanding for large, many parameter 
systems. Here we follow the approach of Mara and 
Tarantola [25] who, simultaneously with Li and Rabitz, 
suggested the calculation of sensitivity indices of 
models with dependent parameters using the HDMR-
ANOVA (analysis of variance) method. Mara and 
Tarantola demonstrated their method on simple 
examples only. Their method was reproduced, encoded 
and is applied here to a real combustion chemical 
model. This methodology is applicable for any 
distribution, but the since the covariance matrix of 
optimized combustion mechanisms are assumed to 
belong to a multivariate normal distribution, here only 
the case of a normal distribution is discussed.  
 
Decorrelation Using the Rosenblatt Transformation 

Mara and Tarantola [25] suggested the application of 
the Rosenblatt transformation [26] to create an 
uncorrelated sample from a correlated one. First, a 
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sample must be generated based on the joint distribution 
function of the parameters. The quality of the generated 
samples can be investigated by checking the positive 
definite property of the calculated covariance matrix 
belonging to the sample. 

The Rosenblatt transformation consists of the 

following steps. Let n

n Rxxx ∈= ),,( 21 Kx denote a 

random vector with an absolutely continuous 

distribution function RRxxxFF
n

n →= :),,()( 21 Kx . 

Consider the following transformation of the vector 
 

)( 111 xFx =  

)|( 1222 xxFx =                (7) 

 

),,|( 121 −= nnnn xxxxFx L  

 

The transformed parameters 1x ,  2x , … , nx  are 

uniformly and independently distributed on interval 
[0,1]. This transformation can be expressed explicitly 
when F is a normal distribution with mean vector m and 

covariance matrix C = { }ijc . Let pC = 

{ }{ }npjicij ≤= K1,: , p

ijC  the cofactor of { }ijc  in 

pC and p
C  the determinant of pC . In this case, the 

transformed parameters can be calculated using the 
following equations 













 −
Φ=

11

11
1

c

mx
x

 

( )





























−













+−Φ=

2
22

2

112
22

2
21

222
C

C
mx

C

C
mxx  

 
M                  (8) 
 

( )
















−













+−Φ= ∑

−

=
n

nn

n

jj

n

j
n

nn

n

nj

nnn
C

C
mx

C

C
mxx

1

1

 

 
where Φ is the standard normal distribution function, 
which converts a standard normal pdf to a standard 
uniform pdf. This means that without applying function 
Φ at the end of the transformation, the obtained 
transformed parameters are independent ones with 
standard normal distribution function. Eq. (8) shows 
that the covariance matrix of the sample must be 
positive definite.  

A Matlab computer code was developed in this work 
that implements the transformation above. Mara and 
Tarantola [25] presented several simple examples, 
which included a 3-parameter linear analytical and a 6-
parameter non-linear numerical test case. Using our 

code, all the test results of Mara and Tarantola could be 
reproduced within 1% accuracy. 
 
Interpretation of the Sensitivity Indices of 

Transformed Parameters 

The transformed parameters nxxx K,, 21  are 

uniformly and independently distributed. The RS-
HDMR method is then applied using samples of these 
parameters and the corresponding simulated output 
distributions and sensitivity indices are calculated. Since 
the first parameter is only transformed and not corrected 
by the effect of any other parameter, the sensitivity 
index 1S  of the first parameter is identical to those of 

the transformed parameter 
1

S , which is in fact identical 

to the sensitivity index corr
1S  that reflects all possible 

correlations. The total contribution of x1 to the variance 

of the output is indicated by sensitivity index total
1

S = 
total

1S = corr_total
1S . Performing the transformation for each 

of the indices i= 1, 2, 3, etc., in turn, sensitivity indices 
corr
iS  and corr_total

iS  can be calculated for each parameter 

independently of the later transformations that aim to 
decorrelate the parameters. This total sensitivity 

index corr_total
iS  reflects the contribution that each 

parameter makes to the total output variance, taking into 
account all its possible correlations. If a parameter 
dominates the output variance, then we would expect 
this index to be close to 1.  

The subsequent transformations aiming to 
decorrelate the parameters can be performed in any 
chosen order. Hence, having n parameters in total, in the 
second step we may select any of the remaining (n-1) 
parameters. We denote the second selected parameter by 
subscript 2 and hence 

2
S  represents the contribution of 

x2 to the output variance, without its correlative 
contribution with x1. Notation 122 −= SS  emphasizes this 

meaning and represents a marginal sensitivity. In a 
similar way the total effect can be calculated, without 

the influence of parameter 1, denoted by total
12

total
2 −= SS . 

These marginal sensitivities are calculated in sequence 
and in the last step, we obtain 

n
S , = 12)1( −−−−− KnnS  = 

uncorr
nS which shows the totally uncorrelated contribution 

of parameter xn to the variance of )(xf . The marginal 

sensitivity, total
n

S  = total
12)1( −−−−− KnnS  = aluncorr_tot

nS is the total 

sensitivity index of parameter n without the influence of 
correlations with any other parameter [25]. While the 
sensitivity indices of in the middle of the sequence of 
decorrelation depend on the order of the selection of 

parameters, the last sensitivity indices uncorr
nS  and 

aluncorr_tot
nS  are independent of this order. 

 



 

reaction parameter 
corr
iS  corr_total

iS  uncorr
iS  aluncorr_tot

iS  

1 
H+O2=O+OH 

ln A   0.088 0.089 0.110 0.110 

2 n 0.035 0.036 0.109 0.109 

3 E/R     0.259 0.260 0.099 0.099 

4 

H+O2(+M)=HO2(+M) 

LP ln A 0.012 0.012 0.000 0.000 

5 LP n   0.000 0.001 0.000 0.000 

6 m(H2) 0.171 0.172 0.000 0.000 

7 m(H2O) 0.039 0.041 0.000 0.000 

8 m(Ar) 0.044 0.044 0.001 0.001 

9 
O+H2=H+OH 

ln A   0.236 0.237 0.024 0.024 

10 n 0.229 0.229 0.023 0.023 

11 E/R 0.258 0.258 0.014 0.014 

12 
OH+H2=H+H2O 

ln A   0.158 0.159 0.004 0.004 

13 n 0.167 0.168 0.005 0.005 

14 E/R     0.190 0.191 0.002 0.002 

15 
H+HO2=H2+O2 

ln A   0.149 0.150 0.011 0.011 

16 n 0.279 0.280 0.012 0.012 

17 E/R     0.131 0.133 0.004 0.004 

18 
H+OH+M=H2O+M 

ln A   0.247 0.247 0.000 0.000 

19 n 0.248 0.249 0.000 0.000 

20 E/R     0.170 0.170 0.000 0.000 

21 
HO2+H=2OH 

ln A   0.257 0.258 0.000 0.000 

22 E/R  0.237 0.238 0.000 0.000 

23 

HO2+OH=H2O+O2 

ln A   0.279 0.279 0.000 0.000 

24 n 0.280 0.281 0.000 0.000 

25 E/R     0.120 0.120 0.000 0.000 

26 
H2O2+H=H2+HO2 

ln A   0.250 0.250 0.000 0.000 

27 n 0.246 0.246 0.000 0.000 

28 E/R     0.234 0.235 0.000 0.000 

29 
2OH(+M)=H2O2(+M) 

LP ln A 0.041 0.041 0.000 0.000 

30 LP n   0.140 0.140 0.000 0.000 

31 LP E/R   0.226 0.227 0.000 0.000 

32 
2HO2=H2O2+O2 

ln A   0.045 0.046 0.000 0.000 

33 E/R     0.126 0.127 0.000 0.000 
 
Table 1. The list of important rate parameters (transformed Arrhenius parameters ln A, n, E/R, and third body 
collision efficiency parameter m) and the corresponding elementary reactions, for which correlated posterior 

uncertainty was determined by Varga et al. [18]. The table contains sensitivity indices corr
iS , corr_total

iS , uncorr
iS  and 

aluncorr_tot
iS  (see text) for each parameter. The 2nd and 4th of these indices are of particular interest and indicated with 

coloured background. The shift of colours from yellow to red shows increasing importance. LP refers to the low-
pressure limit. 
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For systems with independent parameters, the 
importance of a parameter can be simply determined by 
a single total sensitivity measure. For correlated systems 
however, the picture is not so simple since both the 

correlated corr_total
iS  and uncorrelated aluncorr_tot

iS  total 

sensitivity indices are available, as well as a large 
number of marginal sensitivity indices which represent 
partial correlations. Here for simplicity we restrict the 

discussion to the correlated corr_total
iS  and uncorrelated 

aluncorr_tot
iS  total sensitivity indices. If both of these 

indices are close zero, then the investigated parameter is 

of low importance. If the correlated index corr_total
iS  is 

large (e.g. close to 1), this means that parameter xi is 
important. However, if its uncorrelated total index 

aluncorr_tot
iS  is small, then its influence on the output 

variance involves strong correlations with other 
parameters. Finally, if a parameter has a large  
uncorrelated index, then it strongly contributes to output 
variance, without correlated effects with the other 
parameters. 
 
Determination of the Sensitivity Indices of the Rate 

Parameters of a Hydrogen Combustion System 
Varga et al. [18] elaborated an optimized hydrogen 

combustion mechanism based on several thousand 
experimental data points, including ignition delay time 
measurements in shock tubes and rapid compression 
machines, laminar flame velocity determinations and jet 
stirred reactor (JSR) measurements. They demonstrated 
that this optimized model reproduces the literature 
experimental data more accurately (with less deviation), 
than any of the previously published reaction 
mechanisms. 

The aim of this section is to show typical sensitivity 
indices of this hydrogen combustion model for a given 
set of realistic conditions. An important output of the 
mechanism optimization was the calculation of the 
posterior uncertainty of 33 rate parameters (Arrhenius 
parameters ln A, n, E/R and third body collision 
efficiency parameters m) belonging to 11 elementary 
reactions. The Supplementary material of article [18] 
contains the covariance matrix of the fitted parameters 
which illustrates the level of correlation between them. 

The mechanism was investigated for the conditions 
of the experiment of Cheng and Oppenheim [27], who 
measured ignition delay times in a shock tube using 
reflected shock waves. The initial gas contained a 
stoichiometric hydrogen−oxygen mixture, diluted by 
90% argon bath gas. The initial conditions were T= 
1252 K and p= 1.864 atm. The single result of the 
simulation was the ignition delay time, which was 
defined by the maximum of the time derivative of 
pressure. The SENKIN simulation code [28] of the 
CHEMKIN-II package [29] was used for the 
simulations. Decorrelation of the parameters was carried 
out with our newly developed Matlab code, while the 
HDMR sensitivity indices were calculated using the 
GUI-HDMR code [30]. 

The first three columns of Table 1 contain the 
number of the parameter, the corresponding elementary 
reaction, and the type of the parameter (ln A, n, E/R, m). 

The last four columns contain sensitivity indices corr
iS , 

corr_total
iS , uncorr

iS  and aluncorr_tot
iS  for each of the 33 

parameters of the model. 
Comparing the 1st and 2nd columns of sensitivity 

indices, little difference is found between the values of 
corr
iS  and corr_total

iS . Also, up to 3 decimal digit accuracy, 

there is no difference between uncorr
iS  and aluncorr_tot

iS . 

This shows that in this case, calculation of the total 
sensitivities do not provide new information compared 
to the first-order sensitivities and that few higher-order 
effects are found. The second column of the sensitivity 

indices contains the corr_total
iS values. The first thing to 

note is that no single parameter dominates since none of 
the indices are close to 1. A large number of the 
parameters have significant values however, and at first 
glance the indices seem to indicate that several 
elementary reactions of species HO2 and H2O2 have 
high importance. From a chemical perspective this is 
perhaps surprising, since at such a high temperature and 
relatively low pressure the reactions of these species are 
not expected to play a significant role. However, the 
picture becomes clearer when looking at the 

aluncorr_tot
iS values in the 4th column. The aluncorr_tot

iS values 

belonging to the parameters of the majority of the 
elementary reactions of HO2 and H2O2 are all close to 
zero. This indicates that their influence on the output 
variance is almost entirely related to their correlation 
with other parameters and that their uncorrelated 
influence is small. The reaction parameters with the 

largest aluncorr_tot
iS values belong to the elementary 

reaction H+HO2=H2+O2 (initiation) and chain branching 
reactions H+O2=O+OH, O+H2=H+OH and OH+H2= 
H+H2O. Since these parameters have both large 
correlated and uncorrelated sensitivity indices then they 
can be classified as important which is consistent with 
them being typically considered as the most important 
reactions of hydrogen ignition and explosion below the 
2nd ignition limit [31]. 

The sensitivity indices above show that taking into 
account the correlation of parameters, but carrying out a 
global sensitivity analysis using only the fully correlated 
sensitivity indices can lead to misleading results. Many 
parameters seem to be important, but in many cases the 
origin of importance is their interaction with other 
parameters. Unless a parameter is dominant i.e. has 

an corr_total
iS close to 1, then marginal indices should also 

be considered. By calculating the uncorrelated 
sensitivity indices, additional information can be 
obtained on the independent influence of the 
parameters. In this case, parameters that exhibited both 
large correlated and uncorrelated total indices were 
related to reactions that are typically considered to be 
important in accordance with chemical intuition. 
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Conclusions 
Uncertainty analysis investigates the uncertainty of a 

model output due to the uncertainty of the input 
parameters. Uncertainty analysis of combustion models 
has frequently been carried out, but in all cases the 
parameters were assumed to be uncorrelated. The reason 
is that most uncertainty analysis methods are not able to 
cope with correlated parameters and also the 
uncertainties of model parameters were estimated one-
by-one, independently of each other. One result of the 
optimization of reaction mechanisms is the calculation 
of the covariance matrix of the important parameters. 
Also, it is a good assumption that the optimized 
parameters have multivariate normal distribution. 

Mara and Tarantola [25] suggested an extension of 
the High Dimensional Model Representation (HDMR) 
method of uncertainty analysis to correlated parameter 
sets. Their method was reproduced in this work with a 
newly developed Matlab computer code. Using this 
code together with the the GUI-HDMR code [30] of 
Ziehn and Tomlin allows global uncertainty analyses of 
large, multi-parameter combustion models with 
correlated inputs. 

This method and computer code was used to 
investigate the ignition of a hydrogen–oxygen mixture 
for the conditions of a shock tube experiment. The 
calculations revealed that the sensitivity indices 
belonging to the correlated parameters can present 
misleading results when considered in isolation. When 
coupled with analysis of the uncorrelated sensitivity 
indices the importance of parameters within the model 
could be well interpreted. 
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